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The solution of Poisson’s equation on the surface of a sphere may not exist unless 
the right side of the equation is perturbed. A method for perturbing is described which 
then admits a least squares solution. This least squares solution is obtained by the 
Fourier method which is economical in both computational time and storage. 

1. INTRODUCTION 

A solution of Poisson’s equation on the surface of a sphere may not exist and if it 
does exist it is not unique. Any solution is nonunique since that solution plus an 
arbitrary constant is also a solution. In many applications this nonuniqueness is 
not a concern. For example, in computing incompressible fluid flow, the pressure is 
determined by solving Poisson’s equation. However, the gradient of the pressure is 
used to predict the course of the fluid, and therefore an additive constant may be 
selected arbitrarily without affecting the flow. Hence, instead of a single solution U, 
we are interested in an equivalence class zi of solutions where L’ E zi if and only if 
v = u + constant. 

The nonexistence of a solution is a problem which requires additional considera- 
tion. For a solution to exist, the right side of Poisson’s equation must satisfy an 
orthogonality condition which will be derived in Section 3. As a result of computa- 
tional or observational errors this condition may not be satisfied. In this event, a 
reasonable alternative is to determine a least-squares solution [2,4]. In this paper, 
we elect to perturb the right side of the equations so that the system becomes con- 
sistent and existing methods can then be used to obtain the solution. There are two 
factors to consider when perturbing the right side. First, the perturbation should 
be small so that the solution almost satis.fies the unperturbed equations. Second, 
the perturbation should be the same at each point since it is probable that no a 
priori knowledge is available about the functional dependence of the errors. The 
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first factor is treated by perturbing the right side so that the solution to the resulting 
consistent system is a least squares solution to the unperturbed system. However: 
the least-squares solution depends on the choice of the vector norm. ‘The second 
factor is treated by selecting this norm so that the resulting perturbation is a 
constant. It is shown at the end of Section 3 that the usrr2i choice of th= i, norm 
results in a perturbation which is not constant and a.pproximates s L %nction wil idi 
is not dEerentiable at the poles. This latter property is undesirable as it can result 
in a solution which is not regular at the poles even though the right side of Poisson’s 
equation is specified as regular. In time dependent how problems, Poisson’s equa- 
tion is solved many times and the error induced by such irregularities can accu- 
mulate. 

The discrete problem is described in Section 2 together with its matrix 
formulation. In Section 3 a necessary and sufhcient condition for the existence of a 
solution is derived. This section also contains the method of perturbing the right 
side. Section 5 contains a direct method for solving the resulting consistent linear 
system of equations. There are presently two direct methods which compete for 
being the most efficient way to solve this system. The Bunemsn variant of the cyclic, 
reduction algorithm and the Fourier series method [li 31. In a previous paper !5] 
it was shown how the Buneman algorithm could be adapted to solve Poisson’s 
equation on a disk. In this paper we will discuss the Fourier series method applie 
ho the surface of the sphere. It makes extensive use of the fast Fourier transform 
which is generally available in subroutine form. These direct methods are desirable 
both from a standpoint of speed and storage. The operation count for both is 

roportional to in log n where IE and n are the number of latitude and longitude 
points respectively. They require half the storage of iterative methods since the 
solution may be returned in the storage occupied by the right side of Poisson’s 
equation 

2. THE DISCRETIZATION 

We wish to determine an approximate solution of Poisson’s equation de5ned 
on the surface of a sphere. 

We place a net on the surface of the sphere by selecting integers ~2 and R 
and defining net spacings A0 = rr/(~?z + I), A# = ~T,/IE and the net 

B;=iAO i = 0, 8, I - ,...) ??I + 6, iii? -I- 1, 

+j = jAq5 j = 1,2,...,n. 
(2.2) 
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We wish to determine values pij which approximate ~(6~ , &). To this end we 
require that the vij satisfy finite difference approximation to (2.1). 

dB2 fin 8, bin ~i+m(Vi+l,i - 4.i) - sin ~i-dvi,j - ci-l,j>l I 
+ A42 iin” Bi (v&j+1 - 2ai,j + v& = j;,j ) 

for i = 1, 2,..., nz and j = 1, 2 ,..., II. 
If we define 

sin 8i-1/e 
ai= A@sineiy 

(2.3) 

d<= ’ 
A#? sin2 Bi * 

Then (2.3) can be written 

api-l,j - (ai + bi) vi,j $ bivi+,,j + ddzlt,j-l - 2ui,j + tli,j+l> =.fi,j 3 (2.5) 

for i = 1, 2;..., m and j = 1, 2 ,..., IZ where & = f(e, , $j)- As a result of the 
periodicity in 4 we have II~,~ = ZJ~,~ and v~,~+~ = vi.1 . We will denote by z’~ the 
value common to all z+,~, j = 1, 2 ,..., iz and us as the value of v,+~,~ for 
j = 1, 2,..., n. Also we will denote fo,i by fN and fm+l,j by fs. We then have 
nm + 2 unknowns, namely vN , us and v~,~ for i = 1, 2 ,..., 111 and j = 1, 2 ,..., n. 
Equation (2.5) represents mn equations. An additional equation is obtained by 
integrating (and subsequently discretizing) Eq. (2.1) over the spherical segment 
e < 4812. 

=fN. 

Similarly at 0 = rr we obtain 

(2.7) 

which together with (2.5) and (2.6) provide ylzn + 2 equations. We can write the 
complete linear system of equations as 

Au =J: (2.8) 
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The vectors IV, x, ~7, and z are of length FJUZ and are of the form 

has ~7 components and is repeated 17 times. Similarljr 

The matrix B has order wm and is of the form 

where D is a diagonal matrix of order ru, D = diag(& , C& ,.~., diiT> and C is ac 
777 x II? tridiagonal matrix 
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3. LEAST-SQUARES SOLUTIONS 

In this section we will first give necessary and sufficient conditions onf for a 
solution to exist. In the event a solution does not exist we then show how to perturb 
f so that the resulting consistent system has a solution which is a least-squares solu- 
tion to the unperturbed system. 

THEOREM 1. The linear system Au = f has a solution if and only if f  Tlz = 0 

where 

hT = (i sin 19~~~ , hlT, h,r ,..., hlT, i sin 8,+,:,) 

and 

hlT = (sin til , sin en ,..., sin 8,). 
(3.1) 

Proof. It can be shown that ATlz = 0 and therefore the rank of A is less than 
lrz~z + 2. However, if we delete the first row and column of A then the resulting 
matrix is irreducibly diagonally dominant and therefore nonsingular [6, p. 231. 
Hence the rank of A is 7m + 1 and h spans the null space of AT. This completes 
the proof since we know that AC = fhas a solution if and only iff Tfz = 0 for every 
k such that AT/z = 0. 

In practice, as a result of computational or observational errors, f Th f 0, and 
the system does not have a solution. In this event, an acceptable option is to 
determine a least-squares solution. We will perturb f so that a solution to the 
resulting consistent system is a least-squares solution to the original inconsistent 
system. Further, the norm will be selected so that the perturbation is a scalar 
multiple of the vector eT = (1, l,..., 1). 

If we define the matrix H = diag (A) then H is positive definite, and we can 
define the inner product 

and the induced H norm 

(.fi dH = f THg 

I/ u llg = uTHu. 

THEOREM 2. If v is a solution to the consistent system, Au 

g=f ceyf)H e 

(e, 42 
(3.4) 

(3.2) 

g where 

(3.3) 

then v mi~ziinizes [j Au -f//H . 
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ATHA2: = ATH~, 

ATHA, = ATH f-we 

A derivation of the normal equations shows that P minimizes 11 AV -S:IH if and 
only if u is a solution to the consistent system ATETAo = AT,V,C 

Remade I.. c determines an equivalence class ,C of solutions since I’ + I;-̂  is 
also a solution for any scalar r3i. 

Renrark 2. The matrix HA is symmetric, hence for arbitrary vectors g and ,,<: 
( g, Af)H = (Ag, f)H . Therefore the matrix A represents a self-adjoint operator 
under the inner product defined by (3.2). 

Xerimrk 3. For arbitrary f and g 

Hence, subject to (e, g)H = 0, this expression has a minimum va!ue of (e, f)Ha/(~, c.‘:.~; 
for g dehned by (3.4). 

Re~~ia~k 4. ti is the least-square solution (i? norm) to the weighted system 

ff1?4 = HI’“’ I Jo 

Rmark 5. There is considerable freedom of choice for the perturbation of-5 
For example let P be any symmetric positive definite matrix and define t = P-l!:. 
Then a least-squares solution (P norm) is given as a selutioa to the consistent 
system 

where (~,f)~ = GPf. 
Hence P can be selected to provide almost any functional dependence fog E. 
However, usually the functional dependence of the errors in f will not be known 
and therefore it is reasonable to perturbfby e which has no functional dependence. 

If the usual !, norm is selected, then E = h which is not constant and also approxi- 
mates a function which is not regular at the poles. 

We close this section with a summary of the calculations used to perturb $ 
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I. Compute the inner product off with e 

(e, f>H = n sin k,/4(fN + -7%) + f sin i A6 i hj . 
i=l j=l 

II. Compute (e, e)H 

(5 dH = ~a sin OIla/4 + ~(1 + cos t&)/sin 81/z . 

(3.4) 

(3.7) 

III. Define 

ce? f )H 

or.=(e,e)H 

then the elements of the vector g are computed from 

gij = .Lj - rx i = 1, 2 ,..., m; j = 1, 2 ,..,, fl. 

gN = fN - O1. 
gs =fs - 01. 

4. SOLUTIONS OF THE CONSISTENT SYSTEM 

In this section we assume that hTg = 0 and hence the system Au = g has a 
solution. The approach will be to deflate the system to a nonsingular system which 
can be solved by existing methods. For completeness, the Fourier series technique 
is described. 

Let E denote the matrix which is obtained by replacing the first row of the 
identity matrix by the vector hT. E is nonsingular since its determinant is n sin i&/4. 
Now if we multiply Au = g by E we obtain 

EAv = Eg. (4-l) 

The first element of Eg is hTg = 0. The remaining elements are unchanged from the 
corresponding elements of g. Also the first row of EA is just hTL4 which is zero. 
The remaining rows are unchanged from those of A. To solve (4.1) we can arbi- 
trarily set zjN = 0, then the system of order MZ + 1, consisting of (4.1) with the 
first equation and the first variable z’~ deleted, is nonsingular and can therefore 
be solved by a variety of methods. The solution to this system of reduced order, 
augmented with vN = 0 is a solution of (4.1) and therefore of Ao = g since E is 
nonsingular. This deflation is equivalent to specifying vN to be zero and then solving 
the system of reduced order. Note that Eq. (2.6) with fN replaced by gN, will be 
satisfied since the system is singular and (2.6) can be expressed as a linear com- 
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bination of the remaining equations which are satisfied. The nonuniqneness ls 
demonstrated by the fact that ~7~ may be arbitrarily selected. 

We will now describe the Fourier series method: Tb.e elements of the vector .c 
can be expressed in the form 

where for each i, the coefficients GLti and Gj:tj may be obtaiaed from a one dimen 
sional fast Fourier transform (FFT) in the variable CJ!X If 17 is even then L = il,:c$ : 

if 12 is odd then L = (~2 - 1)/2. 
We will determine a solution in the form 

where the coefficients Vgi and VL’j are evaluated in the foollowing manner. i:^ ~:e 
substitute (4.2) and (4.3) into the finite difference equations (2.3) (with~;~ repEaced 
by g(j) and equate coefficients of cos k& and sin rC$j then 

where 

I= 1,2; i = 1, 2,..., m and k = 0, 1,...$ L4 

& = 2di(l - cos kdrj), 

For each k and 1, (4.4) represents a tridiagonal system cf ~1 equations in is? L 2 
unknowns VA!! i = 0, l,..., 177 + 1. Therefore (4.4) must be augmented with z&i- 
tional equations. Since (4.3) is constant at the po’res we have 

y;; = J7(,“’ - @r 
h,rn+l - .;4.5; 

I 

for I = I, 2 and k = 1, 2,..., L. For k = 0 the system (4.4) is augmented by 
-r(I) _ I’ O-0 - cN which can be arbitrarily specified and 

(1) 
4vo.ln - 12pV$;+l = G,‘;;+, , /\ (4.“) 

which is obtained by substituting (4.2) and (4.3) into (2.7) withJC;s replaced by gs, 
Once the VA:: are determined by solving the tridiagonal systems (4.4) augmented 
by (4.5) and (4.6), then the solution ZI<,~ is obtained by a fast Fourier synthesis of 
(4.3). Since the Fourier transforms require on the order of n In ~2 operations, -rhe 
total operation count is proportional to mn In n. 
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We close this section with a table of computational results. The calculations were 
performed on the Control Data 7600 and times are in milliseconds. The error is the 
maximum absolute value of the difference between the solution of the finite 
difference equations and the computed solution. 

Computational Results 

if ??l Time Error 

32 15 13 4.33 x 10-13 

64 31 56 2.28 x 10-1” 

128 63 20s 4.39 x 10-I’ 
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